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We also point out that the measurement of the two main sources of pro-
ductivity growth, technical change and technical e¢ ciency change, may
be not be feasible in many empirical settings and that alternative survey
based approaches o¤er advantages that have yet to be exploited in the
productivity accounting literature.

JEL Classi�cation :
Key words and phrases : .Productivity, Panel Data, Factor Models, Tech-
nical E¢ ciency,

�This paper is based in part on keynote lectures given by Sickles at the Preconference
Workshop of the 2008 Asia-Paci�c Productivity Conference, July 17-19, Department of Eco-
nomics, National Taiwan University, Taipei, Taiwan, 2008; Anadolu University International
Conference in Economics: Developments in Economic Theory, Modeling and Policy, Eskişehir,
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1 Introduction

In this paper we discuss the Solow residual (Solow, 1957) and how it has been
interpreted and measured in the neoclassical production literature and in the
complementary literature on productive e¢ ciency. We point out why panel data
are needed to measure productive e¢ ciency and innovation and thus link the two
strands of literatures. We provide a discussion on the various estimators used in
the two literatures, focusing on one class of estimators in particular, the factor
model. We evaluate in �nite samples the performance of a particular factor
model, the model of Kneip, Sickles, and Song (2009), in identifying productive
e¢ ciencies. We also point out that the measurement of the two main sources
of productivity growth, technical change and technical e¢ ciency change, may
be not be feasible in many empirical settings and that alternative survey based
approaches o¤er advantages that have yet to be exploited in the productivity
accounting literature.
The plan of the paper is as follows. In the next section we discuss how

productivity growth has been measured and how certain aspects of its evolu-
tion have been disregarded by classical economic modeling that abstracted from
the realities of ine¢ ciency in the production process. We also point out how
closely linked technical change and technical e¢ ciency change can appear and
how it is often di¢ cult to discern their di¤erences in productivity growth de-
compositions. Section 3 discusses alternative survey based methods that may
be implemented to assess the contributions of technical innovation and technical
e¢ ciency change to productivity growth through the development of a series of
"Blue-chip" consensus country surveys that could be collected over time and
which could serve as a new measurement data source to evaluate governmental
industrial and competition policies. Section 4 outlines methods that have been
proposed to measure productivity, e¢ ciency, and technical change as well as
focusing on the class of factor models which may have an advantage over other
methods proposed to identify productive e¢ ciencies. Section 5 focuses on one
such factor model developed by Kneip, Sickles, and Song (2009) for generic
stochastic process panel models and which we reparametrize to estimated time-
varying and �rm-speci�c e¢ ciency while allowing a common-stochastic trend to
represent technical change. Concluding remarks are provided in section 6.

2 Productivity Growth and Its Measurement

Productivity growth is the main determinant of changes in our standard of liv-
ing. Although anecdotal evidence about particular levels of wealth creation is
interesting it does not provide governments, sectors, or individual �rms with
an adequate picture of whether growth in living standards is economically sig-
ni�cant and how the growth in living standards is distributed, both within
countries and among countries. The linkages between productivity growth and
living standards is clearly seen during di¤erent epochs for the U. S. economy in
Figure 1 (Koenig, 2000). Growth in GDP per capita tends to rise and fall in
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conjunction with growth in labor productivity.

<<Figure 1 about here>>

2.1 Classical Residual based Partial and Total Factor Pro-
ductivity Measurement

Measurements of productivity usually rely on a ratio of some function of outputs
(Yi) to some function of inputs (Xi). To account for changing input mixes,
modern index number analyses use some measure of total factor productivity
(TFP ). In its simplest form, this is a ratio of output to a weighted sum of
inputs:

TFP =
YP
aiXi

: (1)

Historically, there are two common ways of assigning weights for this index.
They are to use either an arithmetic or geometric weighted average of inputs:
the arithmetic weighted average, due to Kendrick (1961), uses input prices as
the weights; the geometric weighted average of the inputs, attributable to Solow
(1957), uses input expenditure shares as the weights. some reference point to be
useful. Solow�s measure is based on the Cobb-Douglas production function
with constant returns to scale, Y = AX�

LX
1��
K and leads to the TFP measure:

TFP =
Y

X�
LX

1��
K

: (2)

At cost minimizing levels of inputs, the � parameter describes the input
expenditure share for labor. The TFP growth rate would be described by:

T _FP = dY
Y �

h
�dXL

XL
+ (1� �)dXK

XK

i
. In applied work, both sets of weights

(Kendrick�s and Solow�s) are often inconsistent with the observed data.
Endogenous growth models were developed to weaken the strong neoclassical

assumption that long-run productivity growth could only be explained by an ex-
ogenously driven change in technology and that technical change was exogenous.
The classic model put forth by Romer (1986), which began the �new growth
theory,�allowed for non-diminishing returns to capital due to external e¤ects.
For example, research and development by a �rm could spill over and a¤ect the
stock of knowledge available to all �rms. In the simple Romer model �rms face
constant returns to scale to all private inputs. The production function frontier
is formulated as

Y = A(R)f(K;L;R): (3)

In the "new" growth theory, the production frontier is shifted by factors A(R)
where R is the stock of some privately provided input R (such as knowledge) that
is endogenously determined. What is its source? Arrow (1962) emphasized
�learning-by-doing." Recently, Blazer and Sickles (2010) have pursued this as
an alternative to the stochastic frontier model. Romer (1986) modeled A as a
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function of the stock of research and development. Lucas (1988) modeled A as
a function of stock of human capital.
Where multiple outputs exist, TFP can also be described as a ratio of an

index number describing aggregate output levels(yj) divided by an index num-
ber describing aggregate input levels(xi). As such, they derive many of their
properties based the assumptions of the underlying aggregator functions used.
Fisher (1927) laid out a number of desirable properties for these index numbers.
Many of these properties are easily achievable, while others are not. Following
Jorgenson and Griliches (1972), a (logarithmic) total factor productivity index
can be constructed as the di¤erence between log output and log input indices,
i. e.

lnTFP = ln y1t � lnx1t : (4)

An implication of the endogenous growth model is that if a time trend is
added to the standard neoclassical production function then the trend must
be stochastic. This clearly has implications for stationarity (Reikard, 2005).
Recent work by Kneip, Sickles, and Song (2009) has addressed the estimation
issues that are associated with estimating the endogenous technical change in
the presence of technical e¢ ciency change.

2.2 Technical E¢ ciency in Production

It is often quite di¢ cult to separate the impacts of technical change from con-
straints in the use of the existing technology, or technical e¢ ciency. An example
of the overlay of technology (and its change) and e¢ ciency (and its change) can
be found in the classic story of the reason "behind" the speci�cations of the
solid rocket boosters (SRB�s) for the space shuttle. The SRBs are made by
Morton Thiokol at a factory in Utah. Originally, the engineers who designed
the SRBs wanted to make them much fatter than they are. Unfortunately, the
SRBs had to be shipped by train from the factory to the launch site in Florida
and the railroad line runs through a tunnel in the mountains. The SRBs had
to be made to �t through that tunnel. The width of that tunnel is just a little
wider than the U.S. Standard Railroad Gauge (distance between the rails) of
4 feet, 8.5 inches. That is an odd number and begs the question of why that
gauge was used? It was used because US railroads were designed and built by
English expatriates who built them that way in England. The English engi-
neers do so because the �rst rail lines of the 19th century were built by the same
craftsmen who built the pre-railroad tramways, which used the gauge they used.
The reason those craftsmen chose that gauge was because they used the same
jigs and tools that were previously used for building wagons, and the wagons
used that wheel spacing. The wagons used that odd wheel spacing since if the
wagon makers and wheelwrights of the time tried to use any other spacing, the
wheel ruts on some of the old, long distance roads would break the wagon axles.
As a result, the wheel spacing of the wagons had to match the spacing of the
wheel ruts worn into those ancient European roads. Those ancient roads were
built by Imperial Rome for theirir legions and the roads have been used ever
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since. The initial ruts, which everyone else had to match for fear of destroying
their wagons, were �rst made by Roman war chariots. Since the chariots were
made by Imperial Roman chariot makers, they were all alike in the matter of
wheel spacing. Why 4 feet, 8.5 inches? Because that was the width needed
to accommodate the rear ends of two Imperial Roman war horses. Therefore,
the railroad tunnel through which the late 20th century space shuttle SRBs
must pass was excavated slightly wider than two 1st century horses�rear-ends
and consequently, a major design feature of what is arguably the world�s most
advanced transportation system was speci�ed by the width of the read-end of a
horse.
This story is a bit of folk lore whimsy and has an oral and written tradition

that is as old as the aging space shuttle �eet (see, for example, one of the many
url�s where it is documented at http://www.astrodigital.org/space/stshorse.html).
Although this is just one of many anecdotes, it illustrates how constraints
to adopting the most advanced technology may arise seemingly by a random
process, in fact arise by historical precedent. We thus turn to an alternative
to the Solow type neoclassical model of productivity and focus on a component
neglected in the traditional neoclassical approach, technical ine¢ ciency. Since
the fundamental theoretical work by Debreu (1951), Farrell (1957), Shepherd
(1970 ) and Afriat (1972), researchers have established a method to measure the
intrinsically unobservable phenomena of e¢ ciency. Aigner, Lovell, and Schmidt
(1977), Battese and Cora (1977), and Meeusen and Van den Broeck (1977) pro-
vided the econometric methods for the applications waiting to happen. The
linear programming methodology, whose implementation was made transparent
by Charnes, Cooper, and Rhodes (1978), became available at about the same
time. The U. S. and international emphasis on deregulation and the e¢ ciencies
accruing to increased international competition due to the movement to lower
trade barriers provided a fertile research experiment for e¢ ciency modelers and
practitioners.
The e¢ ciency score, as it is usually measured, is a residual. Parametric

assumptions about the distribution of e¢ ciency and its correlation structure
often are made to sharpen the interpretation of the residual. However, that
e¢ ciency measurement should be highly leveraged by parametric assumptions
is by no means a comforting resolution to this measurement problem. Produc-
tivity de�ned by the Solow residual is a reduced form concept, not one that can
be given a structural interpretation. Di¤erent e¢ ciency estimators di¤er on
what identifying restrictions are imposed. Not surprisingly, di¤erent e¢ ciency
estimators often provide us with di¤erent cross-sectional and temporal decompo-
sitions of the Solow residual.1 Kumbhakar and Lovell (2000) and Fried, Lovell,
and Schmidt (2008) have excellent treatments of this literature. It addresses the
continuing debate on how the distributional assumptions made in Pitt and Lee
(1981), Kumbhakar (1990), Battese and Coelli (1992), and others drive the esti-
mates of e¢ ciency. The robust and e¢ cient estimators have been developed by

1Since cross-sectional data are used, the e¢ ciencies estimated are typically conditional
expectations, as it is mentioned in Simar and Wilson (2010).
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Park, Sickles, and Simar (1998, 2003, 2007), Adams, Berger, and Sickles (1999),
Adams and Sickles (2007). These share a number of generic properties with
the estimators proposed by Schmidt and Sickles (1984) and Cornwell, Schmidt,
and Sickles (1990).

2.3 Di¢ culty in Measuring the Decomposition of Produc-
tivity Growth into Technical Change and Technical
E¢ ciency Change

We point out below problems in decomposing productivity change into its
innovation and its e¢ ciency change components. One conclusion from this dis-
cussion is that it simply may not be possible from purely econometric models, no
matter how sophisticated, to model structurally the role of innovation and the
role of e¢ ciency in determining TFP growth. We give two illustrations. The
�rst is based on experience gleaned by Sickles as the Senior Research Coordina-
tor for the Development Economic Policy Reform Analysis Project (DEPRA),
USAID/Egyptian Ministry of Economy, Contract No. 263-0233-C-00-96-00001-
00. A portion of this research was the basis for Getachew and Sickles (2007).
The study analyzed the impact of regulatory and institutional distortions on the
Egyptian private manufacturing sector from the mid 1980�s to the mid 1990�s.
We focused on the impact of economic reforms undertaken since 1991. The
second is based on work of Sickles and Streitwieser (1992, 1998) who addressed
the impact of the Natural Gas Policy Act of 1978 on the U. S. interstate natural
gas transmission industry.

2.3.1 How Can We Identify Speci�c Constraints at the Macro Level?

The Development Economic Policy Reform Analysis Project in Egypt was a
USAID/World Bank project that began in the mid-1980�s and lasted through the
mid-1990�s. The aim of the project was to transition from the planned economy
left by the Soviet Union to a private sector market economy via a structural
adjustment program. Initial e¤orts focused on macroeconomic stabilization
which involved a reduction of the �scal de�cit through a variety of measures.
These measures included:

1. cuts in public investment and subsidization programs;

2. tax reforms, particularly through the introduction of a general sales tax;

3. improvements in collection; and

4. monetary policy tightening to �ght in�ation.

The structural adjustment program also involved extensive price liberaliza-
tion that a¤ected each sector of the Egyptian economy. This involved:

1. adjustments of relative prices;
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2. removal of all export quotas, except for tanned hide, in the trade and
�nancial sectors;

3. lifting of tari¤s on almost all imported capital goods;

4. removal of constraints on nominal interest rate ceilings, administrative
credit allocation, foreign exchange controls and prohibitions against inter-
national capital mobility; and

5. reform of labor laws, which gave employers the right to hire and lay o¤
workers in accordance with economic conditions.

How do we develop a model that identi�es such a plethora of structural
changes in the Egyptian economy? One approach was undertaken by Getachew
and Sickles (2007) who utilized a virtual cost system and were able to identify
allocative distortions that existed before the reforms were undertaken and those
that existed after the reforms had worked their way through the Egyptian pri-
vate sector after the deregulatory reforms. Getachew and Sickles found substan-
tial welfare bene�ts accruing to the Egyptian economy due to these reforms in
total. Unfortunately, the speci�c determinants of the bene�ts of market reforms
could not be ascertained since the speci�c constraints could not be modeled and
thus incorporated into an estimable structural model.

2.3.2 How Can We Identify Speci�c Constraints at the Micro Level?

Another illustration is found in the regulatory change accompanying the U.S.
Interstate Natural Gas Policy Act of 1978. The regulatory history of natural
gas transmission industry is long and complicated. Figure 2 provides us with a
schematic diagram that outlines the maximum ceiling price schedules from 1978
to 1985 and the 24 di¤erent price combinations over the period for di¤erent cat-
egories of natural gas (for details, see Sickles and Streitwieser, 1992). As Figure
2 points out, the regulations and their impact on the various �rms involved in
the deregulatory initiatives are enourmously complex. A formal model of the
constraints in an estimable structural econometric model is simply not feasible.
One can clearly see the di¢ culties inherent in any attempt to parsimoniusly
quantify the constraints, not to mention the di¢ culties one would have in ul-
timately interpreting how these constraints could impact optimal natural gas
transmission decisions.

<<Figure 2 about here>>
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3 Alternatives toMeasurement of Technical Change
and Technical E¢ ciency Change

3.1 Survey-Based Methods for Decomposing Total Factor
Productivity Growth into Technical Change and Tech-
nical E¢ ciency Change: A New Blue Chip Indicator

Various approaches to decomposing total factor productivity into sources that
are due to e¢ ciency change and due to technological change have been discussed.
One popular index number approach based on the decomposing the Malmquist
index (Caves et al., 1982) was introduced by Färe et al. (1992). Of course,
regression based approaches using either traditional neoclassical growth mod-
els, growth models in which endogenous growth is allowed, or growth models in
which ine¢ ciency is explicitly introduced via a frontier technology o¤er poten-
tially richer empirical speci�cations and a more structural determination of the
sources of productivity growth. However, all approaches su¤er due to poor
empirical proxies for the measures of loosening constraints to business activity.
One possibility to circumvent the paucity of reliable empirical measures of the
determinants of productivity growth would be to conduct a structured survey
of business leaders, political leaders World Bank, International Monetary Fund,
and Non-governmental Organizations to identify what are the most important
of an array of factors contributing to economic growth. The results of such a
survey would allow us to parse out the contribution of e¢ ciency change, in the
form of loosening of binding constraints, to economic growth and its relative
contribution vis-à-vis technical progress.
The Blue Chip Economic Indicators each month survey America�s top busi-

ness economists and ask them to supply their forecasts of U.S. economic growth,
in�ation, and interest rates, among other business indicators. The survey be-
gan in 1976. The experts who make up the Blue-Chip panel are on the order
of 50 or so economists and come from a cross section of manufacturing and
�nancial services �rms. The Blue Chip Economic Indicators are used by busi-
ness journalists and by forecasting companies such as the Wall Street Journal,
Forbes, and Reuters. The speci�c information contained in the survey contains
forecasts for this year and next from each panel member as well as an average,
or consensus, of their forecasts for the following measures of economic activity:
Real GDP, GDP price index, Nominal GDP, Consumer price index, Industrial
production, Real disposable personal income, Real personal consumption expen-
ditures, Real non-residential �xed investment, Pre-tax corporate pro�ts, 3-mo.
Treasury bill rate, 10-yr. Treasury note yield, Unemployment rate, Total hous-
ing starts, Auto and light truck sales, Real Net exports. Along with forecasts by
each member of the panel is published the consensus forecast for each variable,
as well as averages of the 10 highest and 10 lowest forecasts for each variable; a
median forecast to eliminate the e¤ects of extreme forecasts on the consensus;
the number of forecasts raised, lowered, or left unchanged from a month ago;
and a di¤usion index that indicates shifts in sentiment that sometimes occur
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prior to changes in the consensus forecast.2 One may question the accuracy of
the Blue Chip indicators. However, in recent work by A. Chun (2009), the
Blue Chip indicators were found to compare favorably with forecasts from the
Diebold-Li (2006) model at short horizon forecasts of short to medium maturity
interest rates. Development of a survey-based method to decompose total fac-
tor productivity growth in a technical change and a technical e¢ ciency change
component is motivated not only by an interest in sharper forecasts but also on
the possibility that our econometrically based estimates may not be reliable or
meaningful. A survey-based set of indicators of such a decomposition may well
be all that we can hope for.
How might a questionnaire be constructed? What might be the best survey

methods to use in order to solicit answers to such basic questions as:
"Total factor productivity growth if the percentage change in production

not attributable to changes in labor, capital, and other inputs. Historically
total factor productivity growth in the U. S. has averaged 2%/year. Assuming
that all contributions to total factor productivity growth much sum to 1 in
percentage terms please answer the following 5 questions-
1. What portion (%) of total factor productivity growth (regress) is due

to the innovation provided by new technology?
2. What portion (%) of total factor productivity growth (regress) is due

to the better use of existing technology?
3. What portion (%) of total factor productivity growth (regress) is due

to changes in government regulations, business climate, or other institutional
factors such as political stability and the democratic process?
4. What portion (%) of total factor productivity growth (regress) is due

to changes in the scale of operation?
5. What portion (%) of total factor productivity growth (regress) is due

to other factors? (Please list them and their relative importance.)"
We expect that information of this sort, collected by a set of experts in

countries of the world, will allow us to better understand the role of technology
transfer, government regulation, institutional factors such as political stability
and the democratic process, and market concentration on the engine for long
term and sustainable economic growth: Total Factor Productivity growth.

2See Wolters Kluwer�s Aspen Press website for the Blue Chip Economic Indicators publi-
cation by Randell E. Moore:
http://www.aspenpublishers.com/product.asp?catalog_name=
Aspen&product_id=SS01934600&cookie%5Ftest=1).

9



4 Measuring Technical Change and E¢ ciency
Change Decompositions of Productivity Growth
Decompositions

4.1 Index Number Procedures

Either index number or regression based approaches require panel data (at a
minimum). The index number approach (Färe et al., 1992) begins by assuming
a panel of �rms (or countries, etc.) with i = 1; :::; N �rms, t = 1; :::; T periods,
j = 1; :::; J inputs and k = 1; :::;K outputs. Thus, xjit is the level of input j
used by �rm i in period t and ykit is the level of output k produced by �rm i
in period t. Assume an intertemporal production set where input and output
observations from all time periods are used. The production technology, S, is

S = f(x; y) j x 2 IRJ+; y 2 IRK+ ; (x; y) is feasibleg: (5)

The e¢ ciency scores are the distances from the frontier. An output-based
distance function (Shephard, 1970) , OD, is de�ned as

OD(x; y) = minf� j (x; y=�) 2 Sg: (6)

Holding the input vector constant, this expression expands the output vector
as much as possible without exceeding the boundaries of S. An output e¢ cient
�rm has a score of 1 and it is not possible for the �rm to increase its output with-
out increasing one or more of its inputs. Conversely, an output ine¢ cient �rm
has OD(x; y) < 1. The productivity index requires output distance functions
calculated between periods. ODt(xt+1; yt+1) = minf�j(xt+1; yt+1=�) 2 Stg has
the technology of time t and scales outputs in time t+ 1 such that (xt+1; yt+1)
is feasible in period t. The observed input-output combination may not have
been possible in time t; the value of this expression can exceed one which would
represent technical change. ODt+1(xt; yt) = minf�j(xt; yt=�) 2 St+1g has the
technology of time t+1 and scales outputs in time t such that (xt; yt) is feasible
in period t+ 1. The �nal equation can be expressed as:

M(xt+1; yt+1; xt; yt) =
ODt+1(xt+1; yt+1)

ODt(xt; yt)
� (7)�

ODt(xt+1; yt+1)

ODt+1(xt+1; yt+1)

ODt(xt; yt)

ODt+1(xt; yt)

�1=2
: (8)

= Et+1 �At+1:

This index captures the dynamics of productivity change by incorporating data
from two adjacent periods. Et+1 re�ects changes in relative e¢ ciency. At+1
re�ects changes in technology between t and t+1. For the index, a value below
1 indicates productivity decline while a value exceeding 1 indicates growth. For
the index components, values below 1 signify a performance decline while values
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above 1 signify an improvement. There may be signi�cant shortcomings of this
approach, as noted by Førsund and Hjalmarsson (2009), due to potential vintage
capital e¤ects or its lack of any obvious inferential theory (Jeong and Sickles,
2004).

4.2 Regression based approaches

Regression based approaches to decomposing productivity growth into technical
change and e¢ ciency change components can be explained using the following
generic model. Assume that the multiple output / multiple input technology
can be estimated parametrically using the output distance function. Since the
output distance function, OD(Y;X) � 1, speci�es the fraction of aggregated
output (Y ) produced by given aggregated inputs (X), it gives us a radial mea-
sure of technical e¢ ciency. For an m-output, n-input production technology,
the deterministic output distance function can be approximated by

�mj Y
j
j

�nkX
�k
k

� 1; (9)

where the j�s and the �k�s are weights representing the technology of the �rm.
If one simply multiplies through by the denominator, approximates the terms
using a Young Index, a geometric mean with varying weights (Balk, 2009), and
adds a disturbance term vit to take account of general statistical noise, and
specify a nonnegative stochastic term uit for the �rm speci�c level of radial
technical ine¢ ciency, then a regression based approach to decomposing produc-
tivity growth into technical change and e¢ ciency change can be speci�ed. The
Cobb-Douglas stochastic distance frontier model can be written as:

0 =
X
j

j ln yj;it �
X
k

�k lnxk;it + vit � uit: (10)

The output distance function is linearly homogeneous in outputs and if one
imposes this restriction and then normalizes with respect to one yi(the last) the
following expression (Lovell, et al., 1994) can be derived:

� ln(yJ) =
X
j

j ln byj;it �X
k

�k lnxk;it + vit � uit; (11)

where yJ is the normalized output and byj = yj=yJ , j = 1; :::; J � 1. Let X�
it =

� ln(xk;it), Y �it = ln(byj;it), and Yit = � ln(yJ): Then the stochastic distance
frontier is

Yit = X
�0
it � + Y

�0
it  + vit � uit; i = 1; :::N; t = 1; :::T: (12)

Letting "it = vit � uit, X 0
it = [ X

�0
it ; Y

�0
it ], � = [ �;  ], we obtain the familiar

functional form for a stochastic frontier production model under a classical panel
data setting:

Yit = X
0
it� + "it; i = 1; :::N; t = 1; :::T: (13)

11



This is the generic model vehicle for estimating e¢ ciency change using fron-
tier methods. If we assume that innovations are available to all �rms and
that �rms� speci�c idiosyncratic errors are due to relative ine¢ ciencies then
we can decompose sources of TFP growth by adding either an exogenous or
a stochastic time trend (see also, Bia, Kao, and Ng, 2007). The panel sto-
chastic frontier model is quite �exible and robust. Technical e¢ ciency of a
particular �rm (observation) can be consistently estimated. Estimation of the
model and the separation of technical ine¢ ciency from statistical noise and
from a common technical change component does not require a set of speci�c
assumptions about the parametric distribution of technical ine¢ ciency (e.g.,
half-normal) and statistical noise (e.g., normal) and dependency structure. For
example, it may be incorrect to assume that ine¢ ciency is independent of the
regressors since if a �rm knows its level of technical ine¢ ciency, this should
a¤ect its input choices. Pitt and Lee (1981) and Schmidt and Sickles (1984)
have developed random and �xed e¤ects as well as maximum likelihood based
estimators for such panel frontier models. To allow for time varying and cross-
sectional speci�c e¢ ciency change one can use a parametrization chosen in Corn-
well, Schmidt, and Sickles (1990). They used a quadratic function of time
uit = W

0
itui = �i1 + �i2t + �i3t

2: Other than a quadratic function of time, uit
has been modelled as uit = (t)�i = [1+exp(bt+ct2)]�1�i (Kumbhakar, 1990);
and uit = �it�i = exp[��(t � T )]�i (Battese and Coelli, 1992). Both of these
approaches used maximum likelihood estimation (MLE) to estimate e¢ ciency.
We now turn to other reduced form approaches for measuring the growth in the
key components of TFP : e¢ ciency and innovation.

4.3 Bayesian Treatments for Time Varying Inef-
�ciency

Sickles and Tsionas (2008) consider a model similar to the KSS model with
common factors whose number is unknown and whose e¤ects are �rm-speci�c.
Bayesian inference techniques organized around MCMC are used to implement
the models. The model is

yit = x
0
it� + 'i (t) + vit; i = 1; :::; n; t = 1; :::; T; (14)

where xit and � are k � 1, and 'i (t) is a unit speci�c unknown function of
time. They assume vit

IID� N
�
0; �2

�
. The model can be written in the form

yit = x0it� + it + vit. For the ith individual we have yi = Xi� + i + vi,
i = 1; :::; n. Assuming i1 � ::: � iT , they assume a spline prior of the form

p (�; �; ) / ��1
Yn

i=1
exp

�
�

0
iQi
2!2

�
= ��1 exp

�
� 1

2!2
0 (IT 
Q) 

�
;

(15)
where Q = D0D, and D is the (T � 1)� T matrix whose elements are Dtt = 1,
Dt�1;t = �1 and zero otherwise. ! is a smoothness parameter which stands
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for the degree of smoothness. This prior says that it � i;t�1 � N
�
0; !2

�
or

Di
IID� N

�
0; !2IT�1

�
, that is it assumes that the �rst derivative of functions

'i (t) is a smooth function of time. It is possible to allow for smooth second
derivatives by using the formulation it � 2i;t�1 + i;t�2 � N

�
0; !2

�
, which

can be written as D(2)i
IID� N

�
0; !2IT�1

�
. We can still de�ne Q = D(2)0D(2),

and the analysis below goes through unmodi�ed. Since i1 plays the role of

an intercept, we can assume �i
IID� N

�
0; �2�

�
, i = 1; :::; n. The model general-

izes Koop and Poirier (2004) in the case of panel data with individual-speci�c
intercepts and time e¤ects. Moreover, it does not rely on the conjugate prior
formulation for the its which can be undesirable.
The posterior kernel distribution is:

p (�; ; �jY;X; !) / ��(nT+1) exp

�
� (Y �X� � )

0
(Y �X� � )

2�2

�
�

exp

�
� 1

2!2
0 (IT 
Q) 

�
; (16)

where X
(nT�k)

= [X 0
1; :::; X

0
n]
0, and Y

(nT�1)
= [y01; :::; y

0
n]
0. Bayesian inference for

this model can be implemented using Gibbs sampling.

4.4 The Latent Class Model

As discussed in Greene (2008), one way to extend the normal-half normal sto-
chastic frontier model (or others) with respect to the distribution of vi is the
�nite mixture approach suggested by Tsionas and Greene (2003). This is a
class speci�c stochastic frontier model. The frontier model can be formulated
in terms of J �classes�so that within a particular class,

f"("ijclass = j) = 2p
2�(�2u+�

2
vj)

�
�

�
�"i(�u=�vj)p

�2u+�
2
vj

��
exp

�
�"2i

2(�2u+�
2
vj)

�
;

"i = yi � �� �Txi:
(17)

Indexation is over classes and involves the variance of the symmetric com-
ponent of "i, �v;j . The unconditional model is a probability weighted mixture
over the J classes, f"("i) = �j�j f"("ij class = j), 0 < �j < 1, �j�j = 1.
Mixing probabilities are additional parameters to be estimated. The model
preserves symmetry of the two-sided error component, but provides a degree of
�exibility that is somewhat greater than the simpler half normal model. The
mixture of normals is, with a �nite number of classes, nonnormal. This model
can be estimated by Bayesian (Tsionas and Greene, 2003) or classical (Orea and
Kumbhakar, 2004; Tsionas and Greene, 2003; Greene, 2004a, 2005) estimation
methods. After estimation, a conditional (posterior) estimate of the class that
applies to a particular observation can be deduced using Bayes theorem, i.e.:
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Prob[class = jjyi] =
f(yijclass = j)Prob[class = j]PJ
j=1 f(yijclass = j)Prob[class = j]

= �̂jji: (18)

Individual observations are assigned to the most likely class. E¢ ciency estima-
tion is based on the respective class for each observation.
Orea and Kumbhakar (2004), Tsionas and Greene (2003) and Greene (2004a,

2005) have extended this model in two directions. First, they allow the entire
frontier model, not just the variance of the symmetric error term, to vary across
classes. This represents a discrete change in the interpretation of the model.
The mixture model is essentially a way to generalize the distribution of one
of the two error components. For the fully mixed models, the formulation is
interpreted as representing a latent regime classi�cation. The second extension
is to allow heterogeneity in the mixing probabilities;

�ij =
exp(�Tj zi)

�Jj=1 exp(�
T
j zi)

; �J = 0: (19)

The rest of the model is a class speci�c stochastic frontier model

f"("ijclass = j) =
2

�j
�

�
"ijj
�j

��
�

�
��j"ijj
�j

��
; (20)

where "ijj = yi��j ��Tj xi: This form of the model has all parameters varying
by class. By suitable equality restrictions, subsets of the coe¢ cients, such as
the technology parameters, � and �, can be made generic.

4.5 The Semiparametric Model and Estimators of Tech-
nical E¢ ciency: The Park,Sickles, and Simar SPE Es-
timators

The models for which the SPE estimators have been derived vary on how the
basic model assumptions have been modi�ed to accommodate a particular is-
sue of misspeci�cation of the underlying e¢ ciency model. A number of SPE
estimators that di¤er on the basis of assumed orthogonality of e¤ects and re-
gressors, temporal variation in the e¢ ciency e¤ects, and correlation structure
of the population disturbance have been considered and developed in a series
of papers by Park and Simar (1994) and Park, Sickles, and Simar (1998, 2003,
2007). For example, when one believes that the e¤ects and all of the regressors
are dependent and are unwilling to specify a parametric distribution for the
dependency structure then one can specify the joint distribution h(�; �) using
kernel smoothers. The Park, Sickles, and Simar (PSS) estimators are based on
the theory of semiparametric e¢ cient bounds estimators and utilize an orthogo-
nalization of the scores of the likelihood function with respect to the parameters
of interest and the nuisance parameters. The PSS estimators are also adaptive
in the terminology of semi-nonparametric estimation theory.
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4.6 Alternatives to the Semiparametric E¢ cient Estima-
tors

There are a number of panel frontier estimators that have been used widely in
the empirical e¢ ciency literature. They di¤er from the SPE estimators based
largely on assumptions made about the distribution of the unobserved e¢ ciency
e¤ects and about the correlation of e¢ ciency e¤ects and regressors. In order
to measure time variant heterogeneity, �it can be speci�ed as:

�it = ci1g1t + ci2g2t + � � �+ ciLgLt; (21)

where cir are unknown parameters, and the basis functions gir are smooth, real-
valued functions of xit:This approach is more general than �tting polynomials
and can be used to parsimoniously model virtually any temporal pattern of �rm
e¢ ciency. The �rm e¢ ciencies are obtained from the structures of the gir and
from the distribution of the e¤ects �i: The �xed and random e¤ect models
are nested in the mixed e¢ ciency e¤ects speci�cation as are the CSS and SS
estimators. Methods for estimating cir; gir; and L can be found in Kneip,
Sickles, and Song (2009).

4.7 Using Factor Models to Estimate the Solow Residual

The literature on factor models and state-space representations of latent factors
using the Kalman �lter is quite lengthy and dense. First, we will give a very
brief introduction to the factor models. Next we will try to provide some
overview of the most recent papers. Then we will select a particular factor
model introduced by Kneip, Sickles, and Song to decompose the Solow residual
into a technical change and an e¢ ciency change component. Breitung and
Eickmeier (2005) provide a very review of factor models and we relay on it in
what is discussed below.

4.7.1 Strict Factor Model

Strict factor models are the most simple of the factor model class and utilize
the following basic assumptions:

yit = �i1f1t + :::+ �irfrt + uit (22)

= �0ift + uit (23)

or

yt = �ft + ut (24)

Y = F�0 + U (25)

where � = [�1 �2 :::�N ]
0
; Y = [y1 y2 ::: yT ]

0
; F = [f1 f2 ::: fT ]

0
; and U =

[u1 u2 ::: uT ]
0.
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For the strict factor models it is usually assumed that ut are mutually un-
correlated with E [ut] = 0 and E [utu0t] = � = diag(�21; �

2
2; :::; �

2
N ). Moreover,

E [ft] = 0. The principle components estimator, the most widely used of the
various strict factor speci�cations, will be inconsistent for �xed N and T !1
unless � = �2I as can be seen by considering the principle components estimator
as an IV estimator.

4.7.2 Approximate Factor Models

When we allow for N ! 1 we can avoid the restrictive assumptions of strict
factor models (Chamberlain and Rothshield, 1983; Stock and Watson, 2002;
Bai, 2003) and in this case it is possible to allow for (weak) serial correlation
for the idiosyncratic errors. However, persistent and non-ergodic processes are
generally ruled out. Idiosyncratic errors can be allowed to be (weakly) cross-
correlated and heteroscedastic and (weak) correlation among the factors and the
idiosyncratic components are possible. With these and some other technical
assumptions Bai (2003) establishes the consistency and asymptotic normality
of the principle components estimator for � and ft. However, as noted by Bai
and Ng (2005), the small sample properties of this estimator may be severely
a¤ected whenever the data is cross-correlated.

4.7.3 Dynamic Factor Models

The dynamic model is given by:

yt = �0gt + �1gt�1 + :::+ �mgt�m + ut; (26)

where �j are N � r matrices and gt is a vector of q stationary factors. Idio-
syncratic components of ut are assumed to be independent (or weakly de-
pendent) stationary processes. Forni, Giannone, Lippi and Reichlin (2004)
provide a method to estimate this model. Let �t = gt � E [gtjgt�1; gt�2; :::],
ft = [gt; gt�1; :::; gt�m]

0 (which is r = (m+1)� q), and � = [�0;�1; :::;�m]. In
their �rst stage the usual principal components are estimated. Note that rather
than ft a rotated version of it, Qft, is estimated. The second step estimates a
vector-autoregression (VAR) model given by:

f̂t = A1f̂t�1 +A2f̂t�2 + :::+Apf̂t�p + et: (27)

Note that the rank of the covariance matrix for the et term is q since f̂t includes
estimation of lagged factors. If we let Ŵr be the matrix generated by the q
largest eigen values of the covariance matrix of et, �̂e = 1

T

PT
t=p+1 ete

0
t;then

�̂t = Ŵ
0
r êt.

An important problem is to determine the number of factors. Forni, Gian-
none, Lippi, Reichlin (2004) provide an informal criterion based on the propor-
tion of explained variances. Bai and Ng (2005) and Stock and Watson (2005)
suggest consistent selection procedures based on principal components. Also,
information criteria and tests of the number of factors are suggested by Breitung
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and Kretschmer (2005). Pesaran (2006) is an interesting paper since it has po-
tential for productivity analysis, in particular frontier production. His paper
deals with estimation and inference in panel data models with a general multi-
factor error structure. The unobserved factors and the individual-speci�c errors
are allowed to follow arbitrary stationary processes and the number of unob-
served factors need not be estimated. Individual-speci�c regressors are �ltered
with cross-section averages and when the cross-section dimension (N) tends to
in�nity, the di¤erential e¤ects of unobserved common factors are eliminated.
Carriero, Kapetanios, and Marcellino (2008) look at the forecasting perfor-

mances of factor models, large scale Bayesian VARs, and multivariate boosting,
while Marcellino and Schumacher (2007) focus on factor models that can handle
unbalanced datasets in their analysis of the German economy. The approach
followed by Doz et al. (2006) and Kapetanios and Marcellino (2006) casts the
large factor model in state-space form. Kapetanios and Marcellino (2006) esti-
mate the factors using subspace algorithms, while Doz et al. (2006) exploit the
Kalman �lter and kernel smoothers. We will focus below on a recent contribu-
tion by Kneip, Sickles, and Song (2009) who develop the asymptotic theory for
general factor models using a combination of principal components and smooth-
ing spines. In that model not only are methods developed to select the number
of factors but also address the potential for nonstationarity. The nonstation-
arity applies here in regard to a stochastic trend in the standard production
function. Below we use the Kneip, Sickles, and Song approach to provide a
method to decompose total factor productivity change into a technical change
and a technical e¢ ciency change component.

5 The Kneip, Sickles, and Song factor Model
Estimator

The Kneip, Sickles, and Song (KSS, 2009) model speci�es the factors in the
following fashion:

Yit = �0(t) +

pX
j=1

�jXitj + vi(t) + �it; i = 1; : : : ; n; t = 1; : : : ; T; (28)

where denotes a general average function, and vi(t) are non-constant individual
e¤ects. In the context of the production decomposition we consider here think
of �0(t) as an exogenous or stochastic long term trend due to technical change
in production (Yit) and the vi(t) as the �rm technical e¢ ciency terms in a
stochastic frontier production function. Details of the estimator are given in
KSS. �0(t) can be eliminated by using centered variables Yit � �Yt, Xijt � �Xtj ,
where �Yt = 1

n

P
i Yit and �Xtj =

1
n

P
iXitj and can be viewed as a nuisance

parameter, although in the context of production analysis we will use it to
identify the common technical change factor, common to all �rms. This is just
the di¤used technical change that is appropriated by each �rm in the industry.
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With this normalization, we can write the model as:

Yit� �Yt =
pX
j=1

�j(Xitj � �Xtj)+ vi(t)+ �it���i; i = 1; : : : ; n; t = 1; : : : ; T; (29)

with ��t = 1
n

P
i �it. Identi�ability requires that all variables Xitj , j = 1; : : : ; p

possess a considerable variation over t.
Our focus lies on analyzing vi(t), t = 1; : : : ; T which of course is motivated

by our application in the �eld of stochastic frontier analysis wherein individ-
ual e¤ects determine technical e¢ ciencies and are the main quantity of interest.
The coe¢ cients � as well as the functions vi can be estimated by semiparametric
techniques using partial spline estimation where the basic underlying assump-
tion is that vi(t) represent �smooth� time trends. KSS generalize the usual
concept of smoothness by relying on second order di¤erences which also allows
them to deal with stochastic processes, for example, random walks. They as-
sume the functions vi can be represented as a weighted average of an unknown
number L 2 f1; 2; : : : g of basis functions (common factors) g1; : : : ; gL given by

vi(t) =
LX
r=1

�irgr(t); (30)

with unknown factor loadings �ir;in which case the centered model can be rewrit-
ten

Yit� �Yt =
pX
j=1

�j(Xitj� �Xtj)+
LX
r=1

�irgr(t)+ �it���t; i = 1; : : : ; n; t = 1; : : : ; T:

(31)
Parametric mixed e¤ects models of this form are widely used in applications

and assume that individual e¤ects can be modeled by linear combinations of
pre-speci�ed basis function (e.g. polynomials). Cornwell, Schmidt, and Sickles
(1990) assume that the vi can be modeled by quadratic polynomials which
in our notation corresponds to an L = 3 and g1; g2; g3 forming a polynomial
basis. Battese and Coelli (1992) propose a model with L = 1 and g1(t) =
exp(��(t � T )) for some � 2 IR. The underlying qualitative assumption is
that there exist some common structure characterizing all v1; : : : ; vn and that
(30) is always ful�lled if the empirical covariance matrix �n;T of the vectors
(vi(1); : : : ; vi(T ))

0, i = 1; : : : ; n, possesses rank L. This is the setup of factor
models considered by Bai (2003, 2005) and Ahn et al. (2005) although the focus
of KSS is to analyze non-stationary but smooth time trends. We will outline the
basic steps in the estimation process. Estimation is based on the fact that under
the above normalization g1; g2; : : : are to be obtained as (functional) principal
components of the sample v1 = (v1(1); : : : ; v1(T ))0; : : : ; vn = (vn(1); : : : ; vn(T ))0.
If we let �n;T = 1

n

P
i vivi

0denote the empirical covariance matrix of v1; : : : ; vn
(recall that

P
i vi = 0) and use �1 � �2 � � � � � �T as well as 1; 2; : : : ; T

to denote the resulting eigenvalues and orthonormal eigenvectors of �n;T ;then

18



some algebra reveals the following relationships:

gr(t) =
p
T � rt for all r = 1; : : : ; t = 1; : : : ; T; (32)

�ir =
1

T

X
t

vi(t)gr(t) for all r = 1; 2; : : : ; i = 1; : : : ; n; (33)

and

�r =
T

n

X
i

�2ir for all r = 1; 2; ::: . (34)

Furthermore, for all l = 1; 2; : : : ;

TX
r=l+1

�r =
X
i;t

(vi(t)�
lX

r=1

�irgr(t))
2 = min

~g1;:::;~gl

X
i

min
#i1;:::;#il

X
t

(vi(t)�
lX

r=1

#ir~gr(t))
2

(35)
The estimation algorithm can be represented in �ve basic steps.
Step 1: Determine estimates �̂1; : : : ; �̂p and functional approximations

�̂1; : : : ; �̂n by minimizing

X
i

1

T

X
t

�
Yit� �Yt�

pX
j=1

�j(Xitj� �Xtj)��i(t)
�2
+
X
i

�
1

T

Z T

1

(�
(m)
i (s))2ds (36)

over all possible values of � and allm-times continuously di¤erentiable functions
�1; : : : ; �n on [1; T ]. Here � > 0 is a preselected smoothing parameter and �

(m)
i

denotes the m-th derivative of �i.
Step 2: Determine the empirical covariance matrix �̂n;T of

v̂1 = (v̂1(1); v̂1(2); : : : ; v̂1(T ))
0; : : : ; v̂n = (v̂n(1); v̂n(2); : : : ; v̂n(T ))

0 by

�̂n;T =
1

n

X
i

v̂iv̂
0
i

and calculate its eigenvalues �̂1 � �̂2 � : : : �̂T and the corresponding eigenvec-
tors ̂1; ̂2; : : : ; ̂T .
Step 3: Set ĝr(t) =

p
T � ̂rt, r = 1; 2; : : : ; L, t = 1; : : : ; T , and for all

i = 1; : : : ; n determine �̂1i; : : : ; �̂Li by minimizing

X
t

0@Yit � �Yt �
pX
j=1

�̂j(Xitj � �Xtj)�
LX
r=1

#riĝr(t)

1A2

(37)

with respect to #1i; : : : ; #Li.
KSS develop the asymptotic theory underlying this particular factor model.

Their main assumption is their Assumption 5: The error terms �it are i.i.d.
with E(�it) = 0, var(�it) = �2 > 0, and E(�8it) < 1. Moreover, �it is indepen-
dent from vi(s) and Xis;j for all t; s; j. They analyze the asymptotic behavior
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of the parameters of their factor model as n; T !1. They do not impose any
condition on the magnitude of the quotient T=n and they allow the smoothing
parameter � remain �xed or increase with n; T .
We consider below a range of stochastic frontier productivity models in a

series of Monte Carlo experiments based on the panel data model (28):

Yit = �0(t) +

pX
j=1

�jXitj + vi(t) + �it: (38)

Two of the existing time-varying individual e¤ects estimators are the ran-
dom e¤ects GLS (Cornwell, Schmidt, and Sickles (CSS), 1990) and MLE (Bat-
tese and Coelli (BC), 1992)]. We also compare the �xed and the random e¤ects
estimators (Schmidt and Sickles, 1984). These estimators have been used ex-
tensively in the productivity literature that interprets time varying �rm e¤ects
(time trends) as technical e¢ ciencies. The CSS estimator allows for an arbi-
trary polynomial in time (usually truncated at powers larger than two) with
di¤erent parameters for each �rm. The BC estimator is a likelihood based
estimator wherein the likelihood function is derived from a mixture of normal
noise and an independent one-sided e¢ ciency error, usually speci�ed as a half-
normal. In the BC estimator, e¢ ciency levels are allowed to di¤er across �rms
but the temporal pattern of e¢ ciency is the same for all �rms.
We simulate samples of size n 2 f30; 100; 300g with T 2 f12; 30g in a model

with p = 2 regressors and with �0(t) = 0 and compare the �nite sample per-
formance of four di¤erent stochastic frontier estimators. The error process �it
is drawn randomly from i.i.d. N(0; 1): The values of true � are set equal to
(0:5; 0:5). In each Monte Carlo sample, the regressors are generated according
to a bivariate VAR model as in Park, Sickles, and Simar (2003, 2007):

Xit = RXi;t�1 + �it; where �it � N(0; I2); (39)

and

R =

�
0:4 0:05
0:05 0:4

�
:

To initialize the simulation, we choose Xi1 � N(0; (I2 � R2)�1) and generate
the samples using (39) for t � 2. Then, the obtained values of Xit are shifted
around three di¤erent means to obtain three balanced groups of �rms from small
to large. We �x each group at �1 = (5; 5)

0; �2 = (7:5; 7:5)
0; and �3 = (10; 10)

0.
The idea is to generate a reasonable cloud of points for X.
We generate time-varying individual e¤ects in the following ways:

DGP1 : vit = �i0 + �i1t+ �i2t
2

DGP2 : vit = � exp(��(t� T ))ui
DGP3 : vit = �i1g1t + �i2g2t

DGP4 : vit = �ui
where �ij (j = 0; 1; 2) � N(0; 1)=102; � = 0:15, ui � i.i.d. jN(0; 1)j ; �ij
(j = 1; 2) � N(0; 1); g1t = sin(�t=4) and g2t = cos(�t=4): DGP1 is the GLS

20



version but the �xed e¤ects treatment is used in the experiments (CSS). We
also consider a limited set of simulations in which the data generating process
is a random walk. DGP2 is based on Battese and Coelli (1992). DGP3 is
considered here to model e¤ects with large temporal variations. DGP4 is the
usual constant e¤ects model. Thus, we may consider DGP3 and DGP4 as two
extreme cases among the possible functional forms of time-varying individual
e¤ects.
For the KSS estimator, cubic smoothing splines were used to approximate

vit in Step 1, and the smoothing parameter � was selected by using general-
ized cross-validation.3 Most simulation experiments were repeated 1,000 times
except the cases for n = 300 for which 500 replications were carried out. To
measure the performances of the e¤ect and e¢ ciency estimators, we used nor-
malized mean squared error (MSE):

R(bv; v) = P
i;t (bvit � vit)2P

i;t v
2
it

:

For the estimates of technical e¢ ciency, we also considered the Spearman rank
order correlations of true average technical e¢ ciency across the simulations and
the estimates of technical e¢ ciency based on the di¤erent estimators.
Before we present the simulation results, we brie�y introduce the other esti-

mators. For the Within and generalized least squares (GLS) estimators which
treat the e¤ects as temporally varying, once individual e¤ects vit are estimated,
technical e¢ ciency is calculated as TE = exp fvi �max(vi)g following Schmidt
and Sickles (1984). Battese and Coelli (1992) employ the maximum likelihood
estimation method to estimate the following equation:

Yit = �0 +

pX
j=1

�jXitj + �it � uit; (40)

where the time-varying e¤ects terms are de�ned as uit = �itui = fexp[��(t� T )]gui
for i = 1; : : : ; n: Technical e¢ ciency is then calculated as TEBC = exp(�uit):
Cornwell, Schmidt, and Sickles (1990) approximate time-varying e¤ects by a
quadratic function of time. The model can be written as

Yit = X
0
it� +W

0
it�i + "it; (41)

whereWit = [1; t; t
2]: IfW contains just a constant term then the model reduces

to the standard panel data model with heterogeneity in the intercept. If we let
�i = �0 + ui then the model can be rewritten as

Yit = X 0
it� +W

0
it�0 + !it; (42)

!it = W 0
itui + "it = vi(t) + �it; (43)

3We let � = (1�p)=p and chose p among a selected grid of 9 equally spaced values between
0.1 and 0.9 so that generalized cross-validation rule is minimized.
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or

Y = X� +W�0 + !; (44)

! = Qu+ " = v + ": (45)

The Within estimator for � is then

b�cssw = (X 0MQX)
�1X 0MQY;

whereMQ = I�Q(Q0Q)�1Q0; Q = diag(Wi); i = 1; : : : ; n; . Technical e¢ ciency
is de�ned as TECSS = exp fvit �max(vit)g : For the KSS estimator, technical
e¢ ciency is calculated similarly as for the CSS estimator.
We now we present the simulation results. Tables 1-4 present mean squared

errors (MSE) of coe¢ cients, e¤ects, and e¢ ciencies, and the Spearman rank
order correlation coe¢ cient of e¢ ciencies for each DGP. Also, average optimal
dimensions, L, chosen by C(l) criterion are reported in the last column of second
panel in each Table. Note �rst that optimal dimension, L, is correctly chosen
for the KSS estimator in all DGPs4 Thus, we can verify the validity of the
dimension test C(l) discussed in Section 2.
For DGP1, the performances of the KSS estimator are better than the other

estimators by any standards. This is true even when the data is as small as
n = 30 and T = 12: In particular, the KSS estimator outperforms the other
estimators in terms of MSE of e¢ ciency. Since the data are generated by DGP1,
we may expect that CSS estimator performs well. This is true for T = 30:
However, if T is small (T = 12), the CSS estimator is no better than the other
estimators. The performances of Within, GLS, and BC estimators generally get
worse as T increases. Results in Table 1a, generated from a random walk data
generating process, are comparable to those in Table 1.
For DGP2, when data is generated using the model speci�cation of the BC

estimator the performances of the KSS estimator is comparable to or sometimes
better than that of the BC estimator. The BC estimator seems to work �ne
for the estimation of e¤ects and e¢ ciencies. In terms of MSE of coe¢ cients,
however, it appears that the BC estimator is not reliable when T is large (T =
30). The Within and GLS estimators also su¤er from substantial distortions
when T is large. DGP3 generates e¤ects with large temporal variations. Hence,
simple functions of time such as used in the CSS or BC estimators are not
su¢ cient for this type of DGP. However, the KSS estimator does not impose any
speci�c forms on the temporal pattern of e¤ects, and thus it can approximate
any shape of time varying e¤ects. We may then expect good performances of
the KSS estimator even in this situation, and results in Table 3 con�rm such
belief. On the other hand, the other estimators su¤er from severe distortions
in the estimates of e¤ects and e¢ ciencies, although coe¢ cient estimates look

4Although DGP1 consists of three di¤erent functions, [1; t; t2]; t2 term is dominating as T
gets large. Thus a one dimensional model is su¢ cient to approximate the e¤ects generated
by DGP1.
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reasonably good. In particular, rank correlations of e¢ ciencies are almost zero
when T is large.
DGP4 represents the reverse situation so that there is no temporal variation

in the e¤ects. Hence, the Within and GLS estimators work very well. Now,
our primary question is what are the performances of KSS estimator in this
situation. As seen in Table 4, its performances are fairly well and comparable
to those of the Within and GLS estimators. Therefore, the KSS estimator may
be safely used even when temporal variation is not noticeable.
In summary, simulation experiments show that either if constant e¤ects are

assumed when the e¤ects are actually time-variant, or if the temporal patterns
of e¤ects are misspeci�ed, parameters as well as e¤ect and e¢ ciency estimates
become severely biased. In these cases, large T increases the bias, and large
n does not help solve the problem. On the other hand, our new estimator
performs very well regardless of the assumption on the temporal pattern of
e¤ects, and may therefore be preferred to other existing estimators in these
types of empirical settings, among potentially many others.

6 Conclusion

We have discussed the Solow residual and how it has been interpreted and mea-
sured in neoclassical production literature and in the complementary literature
on productive e¢ ciency. We have also pointed out why panel data are needed
to measure productive e¢ ciency and innovation and thus link the two strands
of literature. We provided a discussion on the various estimators used in the
two literatures, focusing on one in particular, the factor model and evaluated in
�nite samples the performance of a particular factor model, the KSS model.
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Table 1. Monte Carlo Simulation Results for DGP1

MSE of Coe¢ cients*

N T Within GLS BC CSS KSS
30 12 0.9107 0.6039 0.4933 0.8863 0.4998

30 4.5286 4.0001 1.1767 0.2329 0.1462
100 12 0.2635 0.1438 0.1454 0.2504 0.1170

30 1.2219 1.0068 1.4172 0.0726 0.0410
300 12 0.0801 0.0402 0.0360 0.0790 0.0343

30 0.3409 0.2848 0.1456 0.0258 0.0151

MSE of E¤ects

N T Within GLS CSS KSS L
30 12 0.6159 0.5692 0.4675 0.2278 1.1200

30 0.4476 0.4455 0.0051 0.0037 1.0510
100 12 0.5940 0.5755 0.4438 0.1769 1.0620

30 0.4539 0.4531 0.0050 0.0100 1.0590
300 12 0.6068 0.5990 0.5504 0.1964 1.0341

30 0.4379 0.4376 0.0064 0.0025 1.0500

MSE of E¢ ciencies

N T Within GLS BC CSS KSS
30 12 0.3429 0.3255 0.1485 0.3329 0.0921

30 0.6967 0.7005 0.8430 0.2069 0.0289
100 12 0.4415 0.4294 0.3817 0.3969 0.0529

30 0.8305 0.8279 1.1184 0.2790 0.0236
300 12 0.5102 0.5070 0.4574 0.4575 0.0364

30 0.9401 0.9400 1.6111 0.3470 0.0154

Spearman Rank Correlation of E¢ ciencies

N T Within GLS BC CSS KSS
30 12 0.5052 0.5004 0.8085 0.7692 0.9806

30 0.4829 0.4834 0.7533 0.9841 0.9980
100 12 0.3886 0.3886 0.5656 0.7837 0.9923

30 0.3885 0.3885 0.5900 0.9871 0.9993
300 12 0.3037 0.3037 0.6267 0.7771 0.9924

30 0.2805 0.2805 0.5469 0.9878 0.9995
Note: * is multiplied by 102.
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Table 2. Monte Carlo Simulation Results for DGP2

MSE of Coe¢ cients*

N T Within GLS BC CSS KSS
30 12 2.2939 1.6274 0.3427 0.8901 0.4661

30 161.0314 106.1230 9.6053 5.4253 0.1499
100 12 0.7709 0.6094 0.1149 0.2505 0.1206

30 53.4336 39.4729 8.1635 1.9065 0.0403
300 12 0.2873 0.1760 0.0339 0.0800 0.0371

30 18.4371 11.9706 1.3051 0.6689 0.0141

MSE of E¤ects

N T Within GLS CSS KSS L
30 12 0.3892 0.3753 0.0699 0.1401 1.0720

30 0.7443 0.7351 0.0202 0.0705 1.0430
100 12 0.4678 0.4642 0.0701 0.2120 1.0350

30 0.8029 0.8007 0.0217 0.1024 1.0050
300 12 0.4475 0.4452 0.0617 0.1966 1.0260

30 0.7911 0.7902 0.0213 0.0986 1.0020

MSE of E¢ ciencies

N T Within GLS BC CSS KSS
30 12 0.2260 0.1951 0.0321 0.2586 0.0786

30 0.7924 0.7321 0.0096 0.5236 0.0544
100 12 0.2598 0.2473 0.0400 0.2944 0.0787

30 0.7361 0.7548 0.0091 0.5788 0.0116
300 12 0.2695 0.2618 0.0338 0.3607 0.0916

30 0.7542 0.7342 0.0213 0.5568 0.0040

Spearman Rank Correlation of E¢ ciencies

N T Within GLS BC CSS KSS
30 12 0.8941 0.8914 0.9950 0.9716 0.9976

30 0.6239 0.6293 0.9993 0.8871 0.9946
100 12 0.8283 0.8249 0.9981 0.9784 0.9966

30 0.5349 0.5342 0.9997 0.8917 0.9999
300 12 0.8448 0.8446 0.9982 0.9726 0.9938

30 0.5478 0.5479 0.9982 0.8820 1.0000
Note: * is multiplied by 102.
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Table 3. Monte Carlo Simulation Results for DGP3

MSE of Coe¢ cients*

N T Within GLS BC CSS KSS
30 12 1.6631 0.6852 0.6986 2.7261 0.7099

30 0.5340 0.2621 0.2779 0.6766 0.1821
100 12 0.4224 0.1597 0.1649 0.6866 0.1290

30 0.1468 0.0667 0.0715 0.1853 0.0396
300 12 0.1549 0.0606 0.0638 0.2429 0.0378

30 0.0516 0.0250 0.0281 0.0649 0.0138

MSE of E¤ects

N T Within GLS CSS KSS L
30 12 1.0897 1.0259 1.1143 0.2710 2.1609

30 1.0432 1.0240 1.0840 0.1140 2.0483
100 12 1.0602 1.0393 1.0672 0.2351 2.0585

30 1.0364 1.0294 1.0829 0.0929 2.0102
300 12 1.0424 1.0353 1.0197 0.2081 2.0061

30 1.0307 1.0285 1.0734 0.0822 2.0021

MSE of E¢ ciencies

N T Within GLS BC CSS KSS
30 12 2.1298 2.4086 7.9252 1.4860 0.2583

30 2.2636 2.5640 5.0451 1.6066 0.1031
100 12 2.4655 2.6934 12.8728 1.4582 0.2175

30 7.1729 7.6171 18.6293 4.2421 0.1109
300 12 3.8455 3.9679 25.7966 1.9365 0.2085

30 8.9848 9.2055 26.4074 4.8352 0.1122

Spearman Rank Correlation of E¢ ciencies

N T Within GLS BC CSS KSS
30 12 0.1754 0.1729 0.0408 0.2535 0.9298

30 0.0597 0.0600 -0.0181 0.0019 0.9842
100 12 0.2050 0.2051 0.1513 0.2674 0.9277

30 0.0499 0.0498 0.0477 0.0325 0.9731
300 12 0.2131 0.2130 0.0754 0.2615 0.9236

30 0.0575 0.0574 0.0136 -0.0248 0.9691
Note: * is multiplied by 102.
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Table 4. Monte Carlo Simulation Results for DGP4

MSE of Coe¢ cients*

N T Within GLS BC CSS KSS
30 12 0.5732 0.3586 0.3734 0.8634 0.6515

30 0.2023 0.1513 0.1504 0.2319 0.2292
100 12 0.1741 0.1346 0.1260 0.2529 0.1816

30 0.0571 0.0537 0.0510 0.0695 0.0596
300 12 0.0609 0.0360 0.0364 0.0910 0.0617

30 0.0218 0.0164 0.0142 0.0258 0.0221

MSE of E¤ects

N T Within GLS CSS KSS L
30 12 0.4390 0.3500 1.2061 0.5407 1.0250

30 0.1681 0.1465 0.4526 0.2217 1.0130
100 12 0.2769 0.2631 0.8046 0.2988 1.0300

30 0.1082 0.1065 0.3145 0.1186 1.0200
300 12 0.2689 0.2614 0.7959 0.2799 1.0250

30 0.0969 0.0954 0.2871 0.1015 1.0220

MSE of E¢ ciencies

N T Within GLS BC CSS KSS
30 12 0.1211 0.0993 0.1178 0.2600 0.1344

30 0.0488 0.0421 0.0416 0.1205 0.0595
100 12 0.1719 0.1622 0.0478 0.3488 0.1778

30 0.0798 0.0763 0.0252 0.1857 0.0829
300 12 0.2124 0.2075 0.0449 0.4120 0.2157

30 0.0914 0.0907 0.0231 0.2168 0.0938

Spearman Rank Correlation of E¢ ciencies

N T Within GLS BC CSS KSS
30 12 0.9964 0.9742 0.9738 0.9481 0.9955

30 0.9982 0.9804 0.9787 0.9757 0.9977
100 12 0.9989 0.9883 0.9896 0.9106 0.9987

30 0.9997 0.9946 0.9949 0.9528 0.9996
300 12 0.9997 0.9997 0.9995 0.8946 0.9996

30 0.9997 0.9995 0.9997 0.9588 0.9997
Note: * is multiplied by 102.
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